Platform Extensions

⚠️ ROADMAP FEATURE - NOT YET AVAILABLE

This document describes AgenticFlow's planned Platform Extensions framework for developers. This comprehensive extension system is currently under development and not yet available.

Current Status: Design & Planning Phase Availability: To be announced For Updates: Contact [email protected]


🚧 Planned Extension Framework

The planned AgenticFlow Platform Extensions will enable developers to build powerful extensions that deeply integrate with the core platform, from custom MCP servers to workflow engines and enterprise integrations.

🌟 Platform Extensions Overview

What Are Platform Extensions:

  • πŸ—οΈ System-Level Components - Extend core platform functionality

  • πŸ”Œ Deep Integration - Hook into AgenticFlow's internal systems

  • 🎯 Enterprise Features - Build enterprise-grade extensions

  • 🌐 Ecosystem Contribution - Contribute to the broader AgenticFlow platform

  • πŸ”§ Custom Protocols - Implement custom communication protocols

Extension Types:

from agenticflow.extensions import PlatformExtension

class MyPlatformExtension(PlatformExtension):
    def __init__(self):
        super().__init__(
            name="custom_enterprise_auth",
            category="authentication",
            version="1.0.0"
        )
    
    async def initialize(self, platform_context):
        """Initialize extension with platform context"""
        await self.setup_enterprise_auth(platform_context)
    
    async def handle_request(self, request, context):
        """Handle incoming requests"""
        return await self.process_auth_request(request, context)

πŸ—οΈ Extension Architecture

Core Extension Framework

Base Extension Class:

from abc import ABC, abstractmethod
from typing import Dict, Any, Optional, List
from agenticflow.platform import PlatformContext
from agenticflow.events import EventBus
from agenticflow.config import ExtensionConfig

class PlatformExtension(ABC):
    """Base class for all platform extensions"""
    
    def __init__(
        self,
        name: str,
        category: str,
        version: str = "1.0.0",
        description: str = "",
        author: str = "",
        dependencies: List[str] = None
    ):
        self.name = name
        self.category = category
        self.version = version
        self.description = description
        self.author = author
        self.dependencies = dependencies or []
        
        # Platform integration
        self.platform_context: Optional[PlatformContext] = None
        self.event_bus: Optional[EventBus] = None
        self.config: Optional[ExtensionConfig] = None
        
        # Extension state
        self.initialized = False
        self.enabled = True
        self.metrics = {}
    
    @abstractmethod
    async def initialize(self, platform_context: PlatformContext) -> bool:
        """Initialize the extension with platform context"""
        pass
    
    @abstractmethod
    async def shutdown(self) -> bool:
        """Shutdown the extension gracefully"""
        pass
    
    async def configure(self, config: Dict[str, Any]) -> bool:
        """Configure the extension with settings"""
        self.config = ExtensionConfig(config)
        return True
    
    async def health_check(self) -> Dict[str, Any]:
        """Perform health check and return status"""
        return {
            "name": self.name,
            "version": self.version,
            "status": "healthy" if self.enabled else "disabled",
            "initialized": self.initialized,
            "metrics": self.metrics
        }
    
    def get_manifest(self) -> Dict[str, Any]:
        """Get extension manifest information"""
        return {
            "name": self.name,
            "category": self.category,
            "version": self.version,
            "description": self.description,
            "author": self.author,
            "dependencies": self.dependencies
        }
    
    # Event system integration
    async def emit_event(self, event_type: str, data: Dict[str, Any]):
        """Emit event to platform event bus"""
        if self.event_bus:
            await self.event_bus.emit(f"extension.{self.name}.{event_type}", data)
    
    async def subscribe_to_event(self, event_type: str, handler):
        """Subscribe to platform events"""
        if self.event_bus:
            await self.event_bus.subscribe(event_type, handler)

class ExtensionManager:
    """Manage platform extensions"""
    
    def __init__(self, platform_context: PlatformContext):
        self.platform_context = platform_context
        self.extensions: Dict[str, PlatformExtension] = {}
        self.event_bus = EventBus()
    
    async def load_extension(
        self, 
        extension_class: type, 
        config: Dict[str, Any] = None
    ) -> bool:
        """Load and initialize an extension"""
        
        try:
            # Create extension instance
            extension = extension_class()
            
            # Configure extension
            if config:
                await extension.configure(config)
            
            # Set platform context and event bus
            extension.platform_context = self.platform_context
            extension.event_bus = self.event_bus
            
            # Initialize extension
            success = await extension.initialize(self.platform_context)
            
            if success:
                extension.initialized = True
                self.extensions[extension.name] = extension
                
                await self.event_bus.emit("extension.loaded", {
                    "name": extension.name,
                    "category": extension.category,
                    "version": extension.version
                })
                
                return True
            
        except Exception as e:
            print(f"Failed to load extension {extension_class.__name__}: {e}")
            
        return False
    
    async def unload_extension(self, name: str) -> bool:
        """Unload an extension"""
        
        if name in self.extensions:
            extension = self.extensions[name]
            
            try:
                await extension.shutdown()
                extension.enabled = False
                extension.initialized = False
                
                del self.extensions[name]
                
                await self.event_bus.emit("extension.unloaded", {
                    "name": name
                })
                
                return True
                
            except Exception as e:
                print(f"Failed to unload extension {name}: {e}")
        
        return False
    
    async def get_extension_health(self) -> Dict[str, Any]:
        """Get health status of all extensions"""
        
        health_status = {}
        
        for name, extension in self.extensions.items():
            try:
                health_status[name] = await extension.health_check()
            except Exception as e:
                health_status[name] = {
                    "name": name,
                    "status": "error",
                    "error": str(e)
                }
        
        return health_status

Extension Categories

Authentication Extensions:

from agenticflow.extensions.auth import AuthenticationExtension
from agenticflow.auth import AuthProvider
import jwt
import ldap3

class EnterpriseAuthExtension(AuthenticationExtension):
    """Enterprise authentication with LDAP, SAML, and custom providers"""
    
    def __init__(self):
        super().__init__(
            name="enterprise_auth",
            description="Enterprise authentication with multiple providers",
            version="2.0.0"
        )
        
        self.auth_providers = {}
        self.session_store = {}
    
    async def initialize(self, platform_context: PlatformContext) -> bool:
        """Initialize authentication extension"""
        
        try:
            # Initialize LDAP provider
            await self._setup_ldap_provider()
            
            # Initialize SAML provider
            await self._setup_saml_provider()
            
            # Initialize custom JWT provider
            await self._setup_jwt_provider()
            
            # Setup session management
            await self._setup_session_management()
            
            return True
            
        except Exception as e:
            print(f"Failed to initialize enterprise auth: {e}")
            return False
    
    async def authenticate(self, credentials: Dict[str, Any]) -> Dict[str, Any]:
        """Authenticate user with multiple provider support"""
        
        auth_method = credentials.get("method", "ldap")
        
        if auth_method not in self.auth_providers:
            return {
                "success": False,
                "error": f"Authentication method {auth_method} not supported"
            }
        
        provider = self.auth_providers[auth_method]
        
        try:
            auth_result = await provider.authenticate(credentials)
            
            if auth_result["success"]:
                # Create session
                session_token = await self._create_session(auth_result["user"])
                
                return {
                    "success": True,
                    "user": auth_result["user"],
                    "token": session_token,
                    "expires_in": 3600  # 1 hour
                }
            else:
                return auth_result
                
        except Exception as e:
            return {
                "success": False,
                "error": f"Authentication failed: {e}"
            }
    
    async def _setup_ldap_provider(self):
        """Setup LDAP authentication provider"""
        
        class LDAPProvider(AuthProvider):
            def __init__(self, config):
                self.server_url = config.get("server_url")
                self.bind_dn = config.get("bind_dn")
                self.bind_password = config.get("bind_password")
                self.user_base_dn = config.get("user_base_dn")
                self.user_filter = config.get("user_filter", "(uid={username})")
            
            async def authenticate(self, credentials):
                username = credentials.get("username")
                password = credentials.get("password")
                
                try:
                    server = ldap3.Server(self.server_url, get_info=ldap3.ALL)
                    conn = ldap3.Connection(
                        server,
                        self.bind_dn,
                        self.bind_password,
                        auto_bind=True
                    )
                    
                    # Search for user
                    search_filter = self.user_filter.format(username=username)
                    conn.search(self.user_base_dn, search_filter, attributes=['*'])
                    
                    if not conn.entries:
                        return {"success": False, "error": "User not found"}
                    
                    user_entry = conn.entries[0]
                    user_dn = user_entry.entry_dn
                    
                    # Authenticate user
                    user_conn = ldap3.Connection(server, user_dn, password)
                    if not user_conn.bind():
                        return {"success": False, "error": "Invalid credentials"}
                    
                    # Extract user information
                    user_info = {
                        "username": username,
                        "dn": user_dn,
                        "attributes": dict(user_entry)
                    }
                    
                    return {"success": True, "user": user_info}
                    
                except Exception as e:
                    return {"success": False, "error": str(e)}
        
        ldap_config = self.config.get("ldap", {})
        self.auth_providers["ldap"] = LDAPProvider(ldap_config)
    
    async def _setup_saml_provider(self):
        """Setup SAML authentication provider"""
        
        class SAMLProvider(AuthProvider):
            def __init__(self, config):
                self.idp_url = config.get("idp_url")
                self.sp_entity_id = config.get("sp_entity_id")
                self.certificate = config.get("certificate")
            
            async def authenticate(self, credentials):
                # SAML authentication logic
                saml_response = credentials.get("saml_response")
                
                # Validate SAML response
                # Extract user information
                # Return authentication result
                
                return {"success": True, "user": {"username": "saml_user"}}
        
        saml_config = self.config.get("saml", {})
        self.auth_providers["saml"] = SAMLProvider(saml_config)
    
    async def _setup_jwt_provider(self):
        """Setup JWT authentication provider"""
        
        class JWTProvider(AuthProvider):
            def __init__(self, config):
                self.secret_key = config.get("secret_key")
                self.algorithm = config.get("algorithm", "HS256")
                self.issuer = config.get("issuer")
            
            async def authenticate(self, credentials):
                token = credentials.get("token")
                
                try:
                    payload = jwt.decode(
                        token,
                        self.secret_key,
                        algorithms=[self.algorithm],
                        issuer=self.issuer
                    )
                    
                    return {
                        "success": True,
                        "user": {
                            "username": payload.get("sub"),
                            "email": payload.get("email"),
                            "roles": payload.get("roles", [])
                        }
                    }
                    
                except jwt.ExpiredSignatureError:
                    return {"success": False, "error": "Token expired"}
                except jwt.InvalidTokenError:
                    return {"success": False, "error": "Invalid token"}
        
        jwt_config = self.config.get("jwt", {})
        self.auth_providers["jwt"] = JWTProvider(jwt_config)
    
    async def _create_session(self, user: Dict[str, Any]) -> str:
        """Create user session"""
        
        import uuid
        from datetime import datetime, timedelta
        
        session_id = str(uuid.uuid4())
        expires_at = datetime.utcnow() + timedelta(hours=1)
        
        self.session_store[session_id] = {
            "user": user,
            "created_at": datetime.utcnow(),
            "expires_at": expires_at,
            "last_activity": datetime.utcnow()
        }
        
        return session_id

Storage Extensions:

from agenticflow.extensions.storage import StorageExtension
from agenticflow.storage import StorageProvider
import boto3
import aioredis
from pymongo import MongoClient

class EnterpriseStorageExtension(StorageExtension):
    """Enterprise storage with multiple backend support"""
    
    def __init__(self):
        super().__init__(
            name="enterprise_storage",
            description="Multi-backend enterprise storage solution",
            version="1.5.0"
        )
        
        self.storage_backends = {}
    
    async def initialize(self, platform_context: PlatformContext) -> bool:
        """Initialize storage backends"""
        
        try:
            # Setup S3 storage
            await self._setup_s3_storage()
            
            # Setup Redis cache
            await self._setup_redis_cache()
            
            # Setup MongoDB document store
            await self._setup_mongodb_storage()
            
            # Setup local file system
            await self._setup_filesystem_storage()
            
            return True
            
        except Exception as e:
            print(f"Failed to initialize storage extension: {e}")
            return False
    
    async def store_data(
        self,
        key: str,
        data: Any,
        storage_type: str = "default",
        metadata: Dict[str, Any] = None
    ) -> bool:
        """Store data in specified backend"""
        
        if storage_type not in self.storage_backends:
            raise ValueError(f"Storage backend {storage_type} not available")
        
        backend = self.storage_backends[storage_type]
        
        try:
            success = await backend.store(key, data, metadata)
            
            if success:
                await self.emit_event("data_stored", {
                    "key": key,
                    "storage_type": storage_type,
                    "size": len(str(data)) if isinstance(data, (str, bytes)) else None
                })
            
            return success
            
        except Exception as e:
            await self.emit_event("storage_error", {
                "key": key,
                "storage_type": storage_type,
                "error": str(e)
            })
            raise
    
    async def retrieve_data(self, key: str, storage_type: str = "default") -> Any:
        """Retrieve data from specified backend"""
        
        if storage_type not in self.storage_backends:
            raise ValueError(f"Storage backend {storage_type} not available")
        
        backend = self.storage_backends[storage_type]
        
        try:
            data = await backend.retrieve(key)
            
            await self.emit_event("data_retrieved", {
                "key": key,
                "storage_type": storage_type
            })
            
            return data
            
        except Exception as e:
            await self.emit_event("retrieval_error", {
                "key": key,
                "storage_type": storage_type,
                "error": str(e)
            })
            raise
    
    async def _setup_s3_storage(self):
        """Setup AWS S3 storage backend"""
        
        class S3StorageProvider(StorageProvider):
            def __init__(self, config):
                self.s3_client = boto3.client(
                    's3',
                    aws_access_key_id=config.get('access_key_id'),
                    aws_secret_access_key=config.get('secret_access_key'),
                    region_name=config.get('region', 'us-east-1')
                )
                self.bucket_name = config.get('bucket_name')
            
            async def store(self, key: str, data: Any, metadata: Dict[str, Any] = None):
                try:
                    # Convert data to bytes if needed
                    if isinstance(data, str):
                        data_bytes = data.encode('utf-8')
                    elif isinstance(data, dict):
                        import json
                        data_bytes = json.dumps(data).encode('utf-8')
                    else:
                        data_bytes = data
                    
                    # Upload to S3
                    self.s3_client.put_object(
                        Bucket=self.bucket_name,
                        Key=key,
                        Body=data_bytes,
                        Metadata=metadata or {}
                    )
                    
                    return True
                    
                except Exception as e:
                    print(f"S3 storage error: {e}")
                    return False
            
            async def retrieve(self, key: str) -> Any:
                try:
                    response = self.s3_client.get_object(
                        Bucket=self.bucket_name,
                        Key=key
                    )
                    
                    data = response['Body'].read()
                    
                    # Try to decode as JSON, fallback to string
                    try:
                        import json
                        return json.loads(data.decode('utf-8'))
                    except:
                        return data.decode('utf-8')
                        
                except Exception as e:
                    print(f"S3 retrieval error: {e}")
                    raise
        
        s3_config = self.config.get("s3", {})
        self.storage_backends["s3"] = S3StorageProvider(s3_config)
        self.storage_backends["default"] = self.storage_backends["s3"]
    
    async def _setup_redis_cache(self):
        """Setup Redis caching backend"""
        
        class RedisStorageProvider(StorageProvider):
            def __init__(self, config):
                self.redis_url = config.get('url', 'redis://localhost:6379')
                self.redis = None
            
            async def connect(self):
                if not self.redis:
                    self.redis = await aioredis.from_url(self.redis_url)
            
            async def store(self, key: str, data: Any, metadata: Dict[str, Any] = None):
                await self.connect()
                
                try:
                    if isinstance(data, dict):
                        import json
                        data_str = json.dumps(data)
                    else:
                        data_str = str(data)
                    
                    # Set expiration if provided in metadata
                    ttl = metadata.get('ttl') if metadata else None
                    
                    if ttl:
                        await self.redis.setex(key, ttl, data_str)
                    else:
                        await self.redis.set(key, data_str)
                    
                    return True
                    
                except Exception as e:
                    print(f"Redis storage error: {e}")
                    return False
            
            async def retrieve(self, key: str) -> Any:
                await self.connect()
                
                try:
                    data = await self.redis.get(key)
                    
                    if data:
                        data_str = data.decode('utf-8')
                        
                        # Try to parse as JSON
                        try:
                            import json
                            return json.loads(data_str)
                        except:
                            return data_str
                    
                    return None
                    
                except Exception as e:
                    print(f"Redis retrieval error: {e}")
                    raise
        
        redis_config = self.config.get("redis", {})
        self.storage_backends["cache"] = RedisStorageProvider(redis_config)
    
    async def _setup_mongodb_storage(self):
        """Setup MongoDB document storage"""
        
        class MongoDBStorageProvider(StorageProvider):
            def __init__(self, config):
                self.client = MongoClient(config.get('url', 'mongodb://localhost:27017'))
                self.db = self.client[config.get('database', 'agenticflow')]
                self.collection = self.db[config.get('collection', 'documents')]
            
            async def store(self, key: str, data: Any, metadata: Dict[str, Any] = None):
                try:
                    document = {
                        "_id": key,
                        "data": data,
                        "metadata": metadata or {},
                        "created_at": datetime.utcnow(),
                        "updated_at": datetime.utcnow()
                    }
                    
                    self.collection.replace_one(
                        {"_id": key},
                        document,
                        upsert=True
                    )
                    
                    return True
                    
                except Exception as e:
                    print(f"MongoDB storage error: {e}")
                    return False
            
            async def retrieve(self, key: str) -> Any:
                try:
                    document = self.collection.find_one({"_id": key})
                    
                    if document:
                        return document["data"]
                    
                    return None
                    
                except Exception as e:
                    print(f"MongoDB retrieval error: {e}")
                    raise
        
        mongodb_config = self.config.get("mongodb", {})
        self.storage_backends["documents"] = MongoDBStorageProvider(mongodb_config)

πŸ”Œ Custom MCP Server Development

Building MCP Servers

Custom MCP Server Framework:

from agenticflow.mcp import MCPServer, MCPServerConfig
from agenticflow.mcp.protocol import MCPRequest, MCPResponse
from typing import Dict, Any, List, Optional
import asyncio
import json

class CustomMCPServer(MCPServer):
    """Custom MCP server for specialized integrations"""
    
    def __init__(self, name: str, description: str):
        super().__init__(
            name=name,
            description=description,
            version="1.0.0"
        )
        
        self.tools = {}
        self.resources = {}
        self.capabilities = set()
    
    async def initialize(self, config: MCPServerConfig):
        """Initialize the MCP server"""
        
        # Register tools
        await self._register_tools()
        
        # Setup resources
        await self._setup_resources()
        
        # Initialize capabilities
        await self._initialize_capabilities()
        
        print(f"πŸš€ MCP Server '{self.name}' initialized with {len(self.tools)} tools")
    
    async def handle_request(self, request: MCPRequest) -> MCPResponse:
        """Handle incoming MCP requests"""
        
        try:
            if request.method == "tools/list":
                return await self._handle_tools_list(request)
            elif request.method == "tools/call":
                return await self._handle_tool_call(request)
            elif request.method == "resources/list":
                return await self._handle_resources_list(request)
            elif request.method == "resources/read":
                return await self._handle_resource_read(request)
            else:
                return MCPResponse(
                    success=False,
                    error=f"Unknown method: {request.method}"
                )
                
        except Exception as e:
            return MCPResponse(
                success=False,
                error=str(e)
            )
    
    def register_tool(self, tool_name: str, tool_func, schema: Dict[str, Any]):
        """Register a new tool"""
        
        self.tools[tool_name] = {
            "function": tool_func,
            "schema": schema,
            "description": schema.get("description", ""),
            "parameters": schema.get("parameters", {})
        }
        
        self.capabilities.add("tools")
    
    def register_resource(self, resource_name: str, resource_func, schema: Dict[str, Any]):
        """Register a new resource"""
        
        self.resources[resource_name] = {
            "function": resource_func,
            "schema": schema,
            "description": schema.get("description", ""),
            "mime_type": schema.get("mime_type", "application/json")
        }
        
        self.capabilities.add("resources")
    
    async def _handle_tools_list(self, request: MCPRequest) -> MCPResponse:
        """Handle tools list request"""
        
        tools_list = []
        
        for tool_name, tool_info in self.tools.items():
            tools_list.append({
                "name": tool_name,
                "description": tool_info["description"],
                "inputSchema": tool_info["parameters"]
            })
        
        return MCPResponse(
            success=True,
            data={"tools": tools_list}
        )
    
    async def _handle_tool_call(self, request: MCPRequest) -> MCPResponse:
        """Handle tool call request"""
        
        tool_name = request.params.get("name")
        arguments = request.params.get("arguments", {})
        
        if tool_name not in self.tools:
            return MCPResponse(
                success=False,
                error=f"Tool '{tool_name}' not found"
            )
        
        tool_info = self.tools[tool_name]
        tool_func = tool_info["function"]
        
        try:
            # Call the tool function
            if asyncio.iscoroutinefunction(tool_func):
                result = await tool_func(**arguments)
            else:
                result = tool_func(**arguments)
            
            return MCPResponse(
                success=True,
                data={"content": [{"type": "text", "text": str(result)}]}
            )
            
        except Exception as e:
            return MCPResponse(
                success=False,
                error=f"Tool execution failed: {e}"
            )
    
    async def _handle_resources_list(self, request: MCPRequest) -> MCPResponse:
        """Handle resources list request"""
        
        resources_list = []
        
        for resource_name, resource_info in self.resources.items():
            resources_list.append({
                "uri": f"resource://{self.name}/{resource_name}",
                "name": resource_name,
                "description": resource_info["description"],
                "mimeType": resource_info["mime_type"]
            })
        
        return MCPResponse(
            success=True,
            data={"resources": resources_list}
        )
    
    async def _handle_resource_read(self, request: MCPRequest) -> MCPResponse:
        """Handle resource read request"""
        
        uri = request.params.get("uri", "")
        resource_name = uri.split("/")[-1] if "/" in uri else uri
        
        if resource_name not in self.resources:
            return MCPResponse(
                success=False,
                error=f"Resource '{resource_name}' not found"
            )
        
        resource_info = self.resources[resource_name]
        resource_func = resource_info["function"]
        
        try:
            # Call the resource function
            if asyncio.iscoroutinefunction(resource_func):
                result = await resource_func()
            else:
                result = resource_func()
            
            return MCPResponse(
                success=True,
                data={
                    "contents": [{
                        "uri": uri,
                        "mimeType": resource_info["mime_type"],
                        "text": json.dumps(result) if isinstance(result, dict) else str(result)
                    }]
                }
            )
            
        except Exception as e:
            return MCPResponse(
                success=False,
                error=f"Resource read failed: {e}"
            )

# Example: Custom CRM MCP Server
class CRMMCPServer(CustomMCPServer):
    """Custom MCP server for CRM integration"""
    
    def __init__(self):
        super().__init__(
            name="custom_crm",
            description="Custom CRM integration with specialized tools"
        )
        
        self.crm_client = None
    
    async def _register_tools(self):
        """Register CRM-specific tools"""
        
        # Customer lookup tool
        self.register_tool(
            "customer_lookup",
            self._customer_lookup,
            {
                "description": "Look up customer information by ID or email",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "identifier": {
                            "type": "string",
                            "description": "Customer ID or email address"
                        },
                        "include_orders": {
                            "type": "boolean",
                            "description": "Include order history",
                            "default": False
                        }
                    },
                    "required": ["identifier"]
                }
            }
        )
        
        # Create customer tool
        self.register_tool(
            "create_customer",
            self._create_customer,
            {
                "description": "Create a new customer record",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "name": {"type": "string"},
                        "email": {"type": "string", "format": "email"},
                        "phone": {"type": "string"},
                        "company": {"type": "string"},
                        "notes": {"type": "string"}
                    },
                    "required": ["name", "email"]
                }
            }
        )
        
        # Sales pipeline tool
        self.register_tool(
            "update_opportunity",
            self._update_opportunity,
            {
                "description": "Update sales opportunity status",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "opportunity_id": {"type": "string"},
                        "stage": {
                            "type": "string",
                            "enum": ["lead", "qualified", "proposal", "negotiation", "closed_won", "closed_lost"]
                        },
                        "value": {"type": "number"},
                        "notes": {"type": "string"}
                    },
                    "required": ["opportunity_id", "stage"]
                }
            }
        )
    
    async def _setup_resources(self):
        """Setup CRM resources"""
        
        # Customer database resource
        self.register_resource(
            "customer_database",
            self._get_customer_database,
            {
                "description": "Access to customer database information",
                "mime_type": "application/json"
            }
        )
        
        # Sales reports resource
        self.register_resource(
            "sales_reports",
            self._get_sales_reports,
            {
                "description": "Sales performance reports and analytics",
                "mime_type": "application/json"
            }
        )
    
    async def _customer_lookup(self, identifier: str, include_orders: bool = False):
        """Look up customer information"""
        
        # Simulate CRM API call
        customer_data = {
            "customer_id": "CUST_12345",
            "name": "John Doe",
            "email": identifier,
            "phone": "+1-555-0123",
            "company": "Tech Solutions Inc",
            "created_date": "2024-01-15",
            "total_spent": 15000,
            "last_contact": "2024-01-20"
        }
        
        if include_orders:
            customer_data["orders"] = [
                {"order_id": "ORD_001", "date": "2024-01-10", "amount": 5000},
                {"order_id": "ORD_002", "date": "2024-01-18", "amount": 10000}
            ]
        
        return customer_data
    
    async def _create_customer(self, name: str, email: str, **kwargs):
        """Create new customer record"""
        
        import uuid
        
        customer_id = f"CUST_{str(uuid.uuid4())[:8].upper()}"
        
        customer_record = {
            "customer_id": customer_id,
            "name": name,
            "email": email,
            "phone": kwargs.get("phone"),
            "company": kwargs.get("company"),
            "notes": kwargs.get("notes"),
            "created_date": "2024-01-20",
            "status": "active"
        }
        
        # Simulate database save
        print(f"πŸ’Ύ Created customer: {customer_record}")
        
        return {
            "success": True,
            "customer_id": customer_id,
            "message": "Customer created successfully"
        }
    
    async def _update_opportunity(self, opportunity_id: str, stage: str, **kwargs):
        """Update sales opportunity"""
        
        opportunity_update = {
            "opportunity_id": opportunity_id,
            "stage": stage,
            "value": kwargs.get("value"),
            "notes": kwargs.get("notes"),
            "updated_date": "2024-01-20",
            "updated_by": "mcp_server"
        }
        
        # Simulate CRM update
        print(f"πŸ“Š Updated opportunity: {opportunity_update}")
        
        return {
            "success": True,
            "message": f"Opportunity {opportunity_id} updated to {stage}"
        }
    
    async def _get_customer_database(self):
        """Get customer database summary"""
        
        return {
            "total_customers": 1250,
            "active_customers": 1100,
            "new_this_month": 45,
            "top_customers": [
                {"name": "Enterprise Corp", "spent": 50000},
                {"name": "Tech Solutions", "spent": 35000},
                {"name": "Innovation Inc", "spent": 28000}
            ]
        }
    
    async def _get_sales_reports(self):
        """Get sales reports"""
        
        return {
            "monthly_revenue": 125000,
            "deals_closed": 15,
            "pipeline_value": 450000,
            "conversion_rate": 0.23,
            "top_performers": [
                {"name": "Alice Johnson", "deals": 8, "revenue": 45000},
                {"name": "Bob Smith", "deals": 5, "revenue": 32000}
            ]
        }

# Usage example
async def run_custom_mcp_server():
    """Run the custom CRM MCP server"""
    
    server = CRMMCPServer()
    
    # Initialize server
    config = MCPServerConfig(
        host="localhost",
        port=8080,
        transport="stdio"  # or "http"
    )
    
    await server.initialize(config)
    
    # Start server
    await server.start()
    
    print("πŸš€ Custom CRM MCP Server running on port 8080")

if __name__ == "__main__":
    asyncio.run(run_custom_mcp_server())

MCP Protocol Implementation

Advanced MCP Protocol Features:

from agenticflow.mcp.protocol import MCPProtocol
from agenticflow.mcp.transport import MCPTransport
import asyncio
import websockets
import json

class AdvancedMCPServer(MCPServer):
    """Advanced MCP server with streaming and notifications"""
    
    def __init__(self, name: str):
        super().__init__(name, f"Advanced MCP server: {name}")
        
        self.subscriptions = {}
        self.streaming_tools = {}
    
    def register_streaming_tool(self, tool_name: str, stream_func, schema: Dict[str, Any]):
        """Register a streaming tool that returns continuous data"""
        
        self.streaming_tools[tool_name] = {
            "function": stream_func,
            "schema": schema
        }
        
        # Also register as regular tool
        self.register_tool(tool_name, self._handle_streaming_tool_wrapper, schema)
    
    async def _handle_streaming_tool_wrapper(self, **kwargs):
        """Wrapper for streaming tools"""
        
        tool_name = kwargs.get("__tool_name__")
        
        if tool_name in self.streaming_tools:
            stream_func = self.streaming_tools[tool_name]["function"]
            
            # Start streaming in background
            asyncio.create_task(self._stream_tool_data(tool_name, stream_func, kwargs))
            
            return {
                "message": f"Streaming started for {tool_name}",
                "stream_id": f"{tool_name}_{id(kwargs)}"
            }
        
        return {"error": "Streaming tool not found"}
    
    async def _stream_tool_data(self, tool_name: str, stream_func, kwargs):
        """Stream data from tool"""
        
        try:
            async for data in stream_func(**kwargs):
                # Send notification to subscribed clients
                await self.send_notification("tools/stream", {
                    "tool": tool_name,
                    "data": data,
                    "timestamp": datetime.utcnow().isoformat()
                })
                
                await asyncio.sleep(0.1)  # Rate limiting
                
        except Exception as e:
            await self.send_notification("tools/stream_error", {
                "tool": tool_name,
                "error": str(e)
            })
    
    async def send_notification(self, method: str, params: Dict[str, Any]):
        """Send notification to all connected clients"""
        
        notification = {
            "jsonrpc": "2.0",
            "method": method,
            "params": params
        }
        
        # Send to all connected clients
        for client_id, client in self.connected_clients.items():
            try:
                await client.send(json.dumps(notification))
            except Exception as e:
                print(f"Failed to send notification to client {client_id}: {e}")

# Example: Real-time monitoring MCP server
class MonitoringMCPServer(AdvancedMCPServer):
    """MCP server for real-time system monitoring"""
    
    def __init__(self):
        super().__init__("monitoring")
    
    async def _register_tools(self):
        """Register monitoring tools"""
        
        # System metrics streaming tool
        self.register_streaming_tool(
            "stream_system_metrics",
            self._stream_system_metrics,
            {
                "description": "Stream real-time system metrics",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "interval": {
                            "type": "number",
                            "description": "Update interval in seconds",
                            "default": 5.0
                        },
                        "metrics": {
                            "type": "array",
                            "items": {"type": "string"},
                            "description": "Metrics to monitor",
                            "default": ["cpu", "memory", "disk"]
                        }
                    }
                }
            }
        )
        
        # Log monitoring tool
        self.register_streaming_tool(
            "stream_logs",
            self._stream_logs,
            {
                "description": "Stream log files in real-time",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "log_file": {
                            "type": "string",
                            "description": "Path to log file"
                        },
                        "filter_pattern": {
                            "type": "string",
                            "description": "Regex pattern to filter logs"
                        }
                    },
                    "required": ["log_file"]
                }
            }
        )
    
    async def _stream_system_metrics(self, interval: float = 5.0, metrics: List[str] = None):
        """Stream system metrics"""
        
        import psutil
        
        metrics = metrics or ["cpu", "memory", "disk"]
        
        while True:
            metric_data = {}
            
            if "cpu" in metrics:
                metric_data["cpu"] = {
                    "percent": psutil.cpu_percent(interval=1),
                    "count": psutil.cpu_count(),
                    "freq": psutil.cpu_freq()._asdict() if psutil.cpu_freq() else None
                }
            
            if "memory" in metrics:
                memory = psutil.virtual_memory()
                metric_data["memory"] = {
                    "percent": memory.percent,
                    "total": memory.total,
                    "used": memory.used,
                    "available": memory.available
                }
            
            if "disk" in metrics:
                disk = psutil.disk_usage('/')
                metric_data["disk"] = {
                    "percent": disk.used / disk.total * 100,
                    "total": disk.total,
                    "used": disk.used,
                    "free": disk.free
                }
            
            yield metric_data
            
            await asyncio.sleep(interval)
    
    async def _stream_logs(self, log_file: str, filter_pattern: str = None):
        """Stream log file contents"""
        
        import re
        import aiofiles
        
        pattern = re.compile(filter_pattern) if filter_pattern else None
        
        try:
            async with aiofiles.open(log_file, 'r') as file:
                # Seek to end of file
                await file.seek(0, 2)
                
                while True:
                    line = await file.readline()
                    
                    if line:
                        # Apply filter if specified
                        if pattern is None or pattern.search(line):
                            yield {
                                "timestamp": datetime.utcnow().isoformat(),
                                "line": line.strip(),
                                "source": log_file
                            }
                    else:
                        await asyncio.sleep(0.1)
                        
        except Exception as e:
            yield {
                "error": f"Failed to read log file {log_file}: {e}"
            }

🌐 Workflow Engine Extensions

Custom Workflow Engines

Specialized Workflow Engine:

from agenticflow.engines import WorkflowEngine, WorkflowExecutionContext
from agenticflow.workflow import Workflow, WorkflowNode, WorkflowEdge
from typing import Dict, Any, List, Optional
import asyncio

class DistributedWorkflowEngine(WorkflowEngine):
    """Distributed workflow engine for multi-node execution"""
    
    def __init__(self, cluster_config: Dict[str, Any]):
        super().__init__("distributed_engine", "1.0.0")
        
        self.cluster_config = cluster_config
        self.worker_nodes = {}
        self.load_balancer = None
        self.execution_tracker = {}
    
    async def initialize(self, platform_context):
        """Initialize distributed workflow engine"""
        
        # Setup cluster connectivity
        await self._setup_cluster()
        
        # Initialize load balancer
        await self._setup_load_balancer()
        
        # Start worker health monitoring
        asyncio.create_task(self._monitor_worker_health())
        
        return True
    
    async def execute_workflow(
        self,
        workflow: Workflow,
        context: WorkflowExecutionContext
    ) -> Dict[str, Any]:
        """Execute workflow across distributed nodes"""
        
        execution_id = context.execution_id
        
        try:
            # Analyze workflow for distribution opportunities
            distribution_plan = await self._analyze_workflow_distribution(workflow)
            
            # Create execution tracker
            self.execution_tracker[execution_id] = {
                "workflow": workflow,
                "context": context,
                "distribution_plan": distribution_plan,
                "status": "running",
                "start_time": datetime.utcnow(),
                "node_executions": {}
            }
            
            # Execute workflow nodes according to distribution plan
            results = await self._execute_distributed_workflow(
                workflow,
                context,
                distribution_plan
            )
            
            # Update tracker
            self.execution_tracker[execution_id]["status"] = "completed"
            self.execution_tracker[execution_id]["end_time"] = datetime.utcnow()
            self.execution_tracker[execution_id]["results"] = results
            
            return results
            
        except Exception as e:
            self.execution_tracker[execution_id]["status"] = "failed"
            self.execution_tracker[execution_id]["error"] = str(e)
            raise
    
    async def _analyze_workflow_distribution(self, workflow: Workflow) -> Dict[str, Any]:
        """Analyze workflow for optimal distribution"""
        
        distribution_plan = {
            "parallelizable_groups": [],
            "sequential_dependencies": [],
            "resource_requirements": {},
            "node_assignments": {}
        }
        
        # Find parallelizable node groups
        parallelizable_groups = self._find_parallel_groups(workflow)
        distribution_plan["parallelizable_groups"] = parallelizable_groups
        
        # Analyze resource requirements
        for node in workflow.nodes:
            resource_req = self._analyze_node_resources(node)
            distribution_plan["resource_requirements"][node.id] = resource_req
            
            # Assign node to best worker
            best_worker = await self._select_worker_for_node(node, resource_req)
            distribution_plan["node_assignments"][node.id] = best_worker
        
        return distribution_plan
    
    def _find_parallel_groups(self, workflow: Workflow) -> List[List[str]]:
        """Find groups of nodes that can run in parallel"""
        
        # Build dependency graph
        dependencies = {}
        for edge in workflow.edges:
            if edge.target not in dependencies:
                dependencies[edge.target] = []
            dependencies[edge.target].append(edge.source)
        
        # Find levels of execution
        levels = []
        processed = set()
        
        while len(processed) < len(workflow.nodes):
            # Find nodes with no unprocessed dependencies
            current_level = []
            for node in workflow.nodes:
                if node.id not in processed:
                    node_deps = dependencies.get(node.id, [])
                    if all(dep in processed for dep in node_deps):
                        current_level.append(node.id)
            
            if current_level:
                levels.append(current_level)
                processed.update(current_level)
            else:
                break  # Prevent infinite loop
        
        return levels
    
    def _analyze_node_resources(self, node: WorkflowNode) -> Dict[str, Any]:
        """Analyze resource requirements for a node"""
        
        # Default resource requirements
        resources = {
            "cpu_cores": 1,
            "memory_mb": 512,
            "gpu_required": False,
            "network_intensive": False,
            "storage_mb": 100
        }
        
        # Analyze node type and configuration
        if node.type == "ai_llm":
            resources.update({
                "cpu_cores": 2,
                "memory_mb": 2048,
                "gpu_required": node.config.get("model", "").startswith("large"),
                "network_intensive": True
            })
        elif node.type == "data_processing":
            resources.update({
                "cpu_cores": 4,
                "memory_mb": 4096,
                "storage_mb": 1000
            })
        elif node.type == "image_processing":
            resources.update({
                "cpu_cores": 2,
                "memory_mb": 3072,
                "gpu_required": True
            })
        
        return resources
    
    async def _select_worker_for_node(
        self,
        node: WorkflowNode,
        resource_req: Dict[str, Any]
    ) -> str:
        """Select best worker node for execution"""
        
        best_worker = None
        best_score = -1
        
        for worker_id, worker_info in self.worker_nodes.items():
            if not worker_info["healthy"]:
                continue
            
            # Check resource availability
            if not self._worker_can_handle_requirements(worker_info, resource_req):
                continue
            
            # Calculate suitability score
            score = self._calculate_worker_score(worker_info, resource_req)
            
            if score > best_score:
                best_score = score
                best_worker = worker_id
        
        return best_worker or "localhost"  # Fallback to local execution
    
    def _worker_can_handle_requirements(
        self,
        worker_info: Dict[str, Any],
        resource_req: Dict[str, Any]
    ) -> bool:
        """Check if worker can handle resource requirements"""
        
        capabilities = worker_info["capabilities"]
        
        # Check CPU cores
        if resource_req["cpu_cores"] > capabilities.get("cpu_cores", 1):
            return False
        
        # Check memory
        if resource_req["memory_mb"] > capabilities.get("available_memory_mb", 0):
            return False
        
        # Check GPU requirement
        if resource_req["gpu_required"] and not capabilities.get("gpu_available", False):
            return False
        
        return True
    
    def _calculate_worker_score(
        self,
        worker_info: Dict[str, Any],
        resource_req: Dict[str, Any]
    ) -> float:
        """Calculate suitability score for worker"""
        
        score = 0.0
        capabilities = worker_info["capabilities"]
        current_load = worker_info.get("current_load", 0.5)
        
        # Prefer less loaded workers
        score += (1.0 - current_load) * 50
        
        # Prefer workers with more available resources
        cpu_ratio = capabilities.get("cpu_cores", 1) / resource_req["cpu_cores"]
        memory_ratio = capabilities.get("available_memory_mb", 512) / resource_req["memory_mb"]
        
        score += min(cpu_ratio, 2.0) * 20
        score += min(memory_ratio, 2.0) * 20
        
        # Bonus for GPU availability when needed
        if resource_req["gpu_required"] and capabilities.get("gpu_available"):
            score += 30
        
        # Network connectivity score
        network_score = worker_info.get("network_score", 1.0)
        score += network_score * 10
        
        return score
    
    async def _execute_distributed_workflow(
        self,
        workflow: Workflow,
        context: WorkflowExecutionContext,
        distribution_plan: Dict[str, Any]
    ) -> Dict[str, Any]:
        """Execute workflow using distribution plan"""
        
        execution_results = {}
        node_outputs = {}
        
        # Execute nodes level by level
        for level_nodes in distribution_plan["parallelizable_groups"]:
            # Execute all nodes in this level in parallel
            level_tasks = []
            
            for node_id in level_nodes:
                node = next(n for n in workflow.nodes if n.id == node_id)
                worker_id = distribution_plan["node_assignments"][node_id]
                
                task = self._execute_node_on_worker(
                    node,
                    worker_id,
                    node_outputs,
                    context
                )
                level_tasks.append((node_id, task))
            
            # Wait for all nodes in level to complete
            for node_id, task in level_tasks:
                try:
                    result = await task
                    execution_results[node_id] = result
                    node_outputs[node_id] = result.get("output")
                except Exception as e:
                    execution_results[node_id] = {"error": str(e)}
                    # Handle failure - could implement retry logic here
        
        return {
            "execution_results": execution_results,
            "final_output": node_outputs.get(workflow.output_node_id),
            "distribution_stats": self._get_distribution_stats(distribution_plan)
        }
    
    async def _execute_node_on_worker(
        self,
        node: WorkflowNode,
        worker_id: str,
        node_outputs: Dict[str, Any],
        context: WorkflowExecutionContext
    ) -> Dict[str, Any]:
        """Execute a single node on specified worker"""
        
        if worker_id == "localhost" or worker_id not in self.worker_nodes:
            # Execute locally
            return await self._execute_node_locally(node, node_outputs, context)
        
        # Execute on remote worker
        worker_client = self.worker_nodes[worker_id]["client"]
        
        execution_request = {
            "node": node.to_dict(),
            "inputs": {
                input_name: node_outputs.get(input_source)
                for input_name, input_source in node.input_mappings.items()
            },
            "context": context.to_dict()
        }
        
        try:
            result = await worker_client.execute_node(execution_request)
            return result
        except Exception as e:
            # Fallback to local execution
            print(f"Remote execution failed for {node.id}, falling back to local: {e}")
            return await self._execute_node_locally(node, node_outputs, context)
    
    async def _setup_cluster(self):
        """Setup cluster connectivity"""
        
        cluster_nodes = self.cluster_config.get("nodes", [])
        
        for node_config in cluster_nodes:
            worker_id = node_config["id"]
            
            # Initialize worker client
            worker_client = WorkerClient(node_config["address"], node_config["port"])
            
            try:
                # Test connectivity
                health = await worker_client.health_check()
                
                self.worker_nodes[worker_id] = {
                    "config": node_config,
                    "client": worker_client,
                    "healthy": health["healthy"],
                    "capabilities": health.get("capabilities", {}),
                    "current_load": health.get("load", 0.0),
                    "network_score": 1.0,  # Will be updated by monitoring
                    "last_health_check": datetime.utcnow()
                }
                
                print(f"βœ… Connected to worker {worker_id}")
                
            except Exception as e:
                print(f"❌ Failed to connect to worker {worker_id}: {e}")
    
    async def _monitor_worker_health(self):
        """Monitor worker node health"""
        
        while True:
            for worker_id, worker_info in self.worker_nodes.items():
                try:
                    health = await worker_info["client"].health_check()
                    
                    worker_info.update({
                        "healthy": health["healthy"],
                        "current_load": health.get("load", 0.0),
                        "last_health_check": datetime.utcnow()
                    })
                    
                except Exception as e:
                    worker_info["healthy"] = False
                    print(f"⚠️ Worker {worker_id} health check failed: {e}")
            
            await asyncio.sleep(30)  # Check every 30 seconds

class WorkerClient:
    """Client for communicating with worker nodes"""
    
    def __init__(self, address: str, port: int):
        self.address = address
        self.port = port
        self.session = None
    
    async def health_check(self) -> Dict[str, Any]:
        """Check worker health"""
        
        # Implement actual health check
        return {
            "healthy": True,
            "load": 0.3,
            "capabilities": {
                "cpu_cores": 8,
                "available_memory_mb": 16384,
                "gpu_available": True
            }
        }
    
    async def execute_node(self, request: Dict[str, Any]) -> Dict[str, Any]:
        """Execute node on worker"""
        
        # Implement actual node execution
        return {
            "success": True,
            "output": "Node executed successfully on worker",
            "execution_time": 1.5
        }

πŸš€ Deployment & Management

Extension Deployment Pipeline

Automated Extension Deployment:

from agenticflow.deployment import ExtensionDeployer
from agenticflow.packaging import ExtensionPackage
import docker
import kubernetes
import yaml

class ExtensionDeploymentPipeline:
    """Automated deployment pipeline for platform extensions"""
    
    def __init__(self, deployment_config: Dict[str, Any]):
        self.config = deployment_config
        self.docker_client = docker.from_env()
        self.k8s_client = kubernetes.client.ApiClient()
    
    async def deploy_extension(
        self,
        extension_package: ExtensionPackage,
        environment: str = "production"
    ) -> Dict[str, Any]:
        """Deploy extension to specified environment"""
        
        deployment_result = {
            "extension": extension_package.name,
            "version": extension_package.version,
            "environment": environment,
            "status": "deploying",
            "steps": []
        }
        
        try:
            # Step 1: Build container image
            image_result = await self._build_container_image(extension_package)
            deployment_result["steps"].append(image_result)
            
            # Step 2: Run security scan
            security_result = await self._run_security_scan(image_result["image_id"])
            deployment_result["steps"].append(security_result)
            
            # Step 3: Deploy to Kubernetes
            k8s_result = await self._deploy_to_kubernetes(
                extension_package,
                image_result["image_id"],
                environment
            )
            deployment_result["steps"].append(k8s_result)
            
            # Step 4: Run health checks
            health_result = await self._run_deployment_health_checks(
                extension_package.name,
                environment
            )
            deployment_result["steps"].append(health_result)
            
            # Step 5: Register with platform
            registration_result = await self._register_with_platform(
                extension_package,
                environment
            )
            deployment_result["steps"].append(registration_result)
            
            deployment_result["status"] = "deployed"
            deployment_result["deployment_url"] = k8s_result.get("service_url")
            
        except Exception as e:
            deployment_result["status"] = "failed"
            deployment_result["error"] = str(e)
        
        return deployment_result
    
    async def _build_container_image(self, package: ExtensionPackage) -> Dict[str, Any]:
        """Build Docker container for extension"""
        
        # Generate Dockerfile
        dockerfile_content = self._generate_dockerfile(package)
        
        # Build image
        image, build_logs = self.docker_client.images.build(
            fileobj=io.BytesIO(dockerfile_content.encode()),
            tag=f"{package.name}:{package.version}",
            rm=True,
            forcerm=True
        )
        
        return {
            "step": "build_image",
            "status": "completed",
            "image_id": image.id,
            "image_tag": f"{package.name}:{package.version}",
            "size": image.attrs["Size"]
        }
    
    def _generate_dockerfile(self, package: ExtensionPackage) -> str:
        """Generate Dockerfile for extension"""
        
        dockerfile = f"""
FROM python:3.11-slim

WORKDIR /app

# Install system dependencies
RUN apt-get update && apt-get install -y \\
    gcc \\
    && rm -rf /var/lib/apt/lists/*

# Copy extension files
COPY {package.source_path} /app/

# Install Python dependencies
RUN pip install --no-cache-dir -r requirements.txt

# Install the extension
RUN pip install --no-cache-dir .

# Set environment variables
ENV PYTHONPATH=/app
ENV EXTENSION_NAME={package.name}
ENV EXTENSION_VERSION={package.version}

# Expose port
EXPOSE 8080

# Health check
HEALTHCHECK --interval=30s --timeout=10s --retries=3 \\
    CMD curl -f http://localhost:8080/health || exit 1

# Run extension
CMD ["python", "-m", "{package.entry_point}"]
"""
        return dockerfile.strip()
    
    async def _run_security_scan(self, image_id: str) -> Dict[str, Any]:
        """Run security scan on container image"""
        
        # Implement security scanning (e.g., with Trivy, Clair, etc.)
        scan_result = {
            "step": "security_scan",
            "status": "completed",
            "vulnerabilities": {
                "critical": 0,
                "high": 2,
                "medium": 5,
                "low": 12
            },
            "scan_passed": True  # Based on threshold policy
        }
        
        if scan_result["vulnerabilities"]["critical"] > 0:
            scan_result["status"] = "failed"
            scan_result["scan_passed"] = False
            raise Exception("Critical vulnerabilities found in image")
        
        return scan_result
    
    async def _deploy_to_kubernetes(
        self,
        package: ExtensionPackage,
        image_id: str,
        environment: str
    ) -> Dict[str, Any]:
        """Deploy extension to Kubernetes"""
        
        # Generate Kubernetes manifests
        deployment_manifest = self._generate_k8s_deployment(package, image_id, environment)
        service_manifest = self._generate_k8s_service(package, environment)
        configmap_manifest = self._generate_k8s_configmap(package, environment)
        
        # Apply manifests
        k8s_apps_v1 = kubernetes.client.AppsV1Api(self.k8s_client)
        k8s_core_v1 = kubernetes.client.CoreV1Api(self.k8s_client)
        
        namespace = f"agenticflow-{environment}"
        
        try:
            # Create/update ConfigMap
            try:
                k8s_core_v1.patch_namespaced_config_map(
                    name=f"{package.name}-config",
                    namespace=namespace,
                    body=configmap_manifest
                )
            except kubernetes.client.ApiException as e:
                if e.status == 404:
                    k8s_core_v1.create_namespaced_config_map(
                        namespace=namespace,
                        body=configmap_manifest
                    )
            
            # Create/update Deployment
            try:
                k8s_apps_v1.patch_namespaced_deployment(
                    name=package.name,
                    namespace=namespace,
                    body=deployment_manifest
                )
            except kubernetes.client.ApiException as e:
                if e.status == 404:
                    k8s_apps_v1.create_namespaced_deployment(
                        namespace=namespace,
                        body=deployment_manifest
                    )
            
            # Create/update Service
            try:
                k8s_core_v1.patch_namespaced_service(
                    name=f"{package.name}-service",
                    namespace=namespace,
                    body=service_manifest
                )
            except kubernetes.client.ApiException as e:
                if e.status == 404:
                    k8s_core_v1.create_namespaced_service(
                        namespace=namespace,
                        body=service_manifest
                    )
            
            return {
                "step": "kubernetes_deploy",
                "status": "completed",
                "namespace": namespace,
                "service_url": f"http://{package.name}-service.{namespace}.svc.cluster.local:8080"
            }
            
        except Exception as e:
            return {
                "step": "kubernetes_deploy",
                "status": "failed",
                "error": str(e)
            }
    
    def _generate_k8s_deployment(
        self,
        package: ExtensionPackage,
        image_id: str,
        environment: str
    ) -> Dict[str, Any]:
        """Generate Kubernetes deployment manifest"""
        
        return {
            "apiVersion": "apps/v1",
            "kind": "Deployment",
            "metadata": {
                "name": package.name,
                "labels": {
                    "app": package.name,
                    "version": package.version,
                    "environment": environment,
                    "component": "extension"
                }
            },
            "spec": {
                "replicas": self.config.get("replicas", 2),
                "selector": {
                    "matchLabels": {
                        "app": package.name
                    }
                },
                "template": {
                    "metadata": {
                        "labels": {
                            "app": package.name,
                            "version": package.version
                        }
                    },
                    "spec": {
                        "containers": [{
                            "name": package.name,
                            "image": f"{package.name}:{package.version}",
                            "ports": [{
                                "containerPort": 8080,
                                "name": "http"
                            }],
                            "env": [
                                {
                                    "name": "ENVIRONMENT",
                                    "value": environment
                                },
                                {
                                    "name": "EXTENSION_NAME",
                                    "value": package.name
                                }
                            ],
                            "resources": {
                                "requests": {
                                    "memory": "256Mi",
                                    "cpu": "100m"
                                },
                                "limits": {
                                    "memory": "512Mi",
                                    "cpu": "500m"
                                }
                            },
                            "livenessProbe": {
                                "httpGet": {
                                    "path": "/health",
                                    "port": 8080
                                },
                                "initialDelaySeconds": 30,
                                "periodSeconds": 10
                            },
                            "readinessProbe": {
                                "httpGet": {
                                    "path": "/ready",
                                    "port": 8080
                                },
                                "initialDelaySeconds": 5,
                                "periodSeconds": 5
                            }
                        }]
                    }
                }
            }
        }

πŸš€ Next Steps & Advanced Topics

πŸ“š Advanced Extension Development

πŸ› οΈ Extension Resources

πŸ’¬ Community & Support


🧩 Platform extensions unlock the full potential of AgenticFlow by allowing deep integration with core platform capabilities. From custom authentication systems to distributed workflow engines, extensions let you build enterprise-grade solutions that extend and enhance the entire AgenticFlow ecosystem. Start building platform extensions today and shape the future of AI automation.

Extend the platform, empower the ecosystem, enable the impossible.

Last updated

Was this helpful?